显著性检验[6]–卡方检验法 (chi-square test)

在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。

对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。 继续阅读“显著性检验[6]–卡方检验法 (chi-square test)”

显著性检验[4]–秩和检验

秩和检验,Wilcoxon-Matt-Whitney test (or Wilcoxon rank sum test, orMann-Whitney U-test) 用于比较两个并不满足正态分布群组的均值比较:这是一个非参数检验(non-parametrical test)。其与应用于独立样本的t-test相当,但t-test需要数据为正态分布,这个检验不需要数据为正态分布。
继续阅读“显著性检验[4]–秩和检验”

显著性检验[3]–T检验

T检验,亦称student t检验(Student’s t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。

继续阅读“显著性检验[3]–T检验”

显著性检验[1]-概述

显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。

继续阅读“显著性检验[1]-概述”