python–multiprocessing多进程

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约
大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个
还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候
就到了。

更多阅读:
http://www.cnblogs.com/vamei/archive/2012/10/12/2721484.html

Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会
创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中
有进程结束,才会创建新的进程来它。这里有一个简单的例子:

先创建容量为3的进程池,然后将f(i)依次传递给它,运行脚本后利用ps aux | grep pool.py查看进程情
况,会发现最多只会有三个进程执行。pool.apply_async()用来向进程池提交目标请求,pool.join()是用来等待
进程池中的worker进程执行完毕,防止主进程在worker进程结束前结束。但必pool.join()必须使用在
pool.close()或者pool.terminate()之后。其中close()跟terminate()的区别在于close()会等待池中的worker进
程执行结束再关闭pool,而terminate()则是直接关闭。result.successful()表示整个调用执行的状态,如果还有
worker没有执行完,则会抛出AssertionError异常。

利用multiprocessing下的Pool可以很方便的同时自动处理几百或者上千个并行操作,脚本的复杂性也大大降
低。

参考资料:
http://blog.csdn.net/bravezhe/article/details/7298051

发表评论

电子邮件地址不会被公开。 必填项已用*标注