【4】进程管理-5-Python内存释放--gc

Python作为一种动态类型的语言,其对象和引用分离。这与曾经的面向过程语言有很大的区别。为了有效的释放内存,Python内置了垃圾回收的支持。Python采取了一种相对简单的垃圾回收机制,即引用计数,并因此需要解决孤立引用环的问题

python话说会自己管理内存,实际上,对于占用很大内存的对象,并不会马上释放。举例,a=range(10000*10000),会发现内存飙升一个多G,del a 或者a=[]都不能将内存降下来。 del 可以删除多个变量,del a,b,c,d 办法:

import gc (garbage collector)
del a
gc.collect()

马上内存就释放了。

一、gc模块

gc.enable() 打开自动回收garbage
gc.disable() 关闭自动回收垃圾
gc.isenabled 返回自动回收垃圾是否打开
gc.collect() 开始回收垃圾,然有三个参数0,1,2 分别代表不同级别的回收
gc.set_debug(flags) debug的结果会写入sys.stderr
gc.set_debug() 返回debug的结果
gc.get_objects 返回被删除的东西的名称

更多函数参见官网 gc 

二 python内存管理机制

主要参考的 Python深入06 Python的内存管理 

Python作为一种动态类型的语言,其对象和引用分离。这与曾经的面向过程语言有很大的区别。为了有效的释放内存,Python内置了垃圾回收的支持。Python采取了一种相对简单的垃圾回收机制,即引用计数,并因此需要解决孤立引用环的问题。Python与其它语言既有共通性,又有特别的地方。对该内存管理机制的理解,是提高Python性能的重要一步

Python解释器对正在使用的对象保持计数。当对象不再被引用指向的时候,垃圾收集器可以释放该对象,获取分配的内存。例如,如果你使用常规的Python(CPython, 不是JPython)时,Python的垃圾收集器将调用free()/delete()

2.1 对象的内存使用

为了探索对象在内存的存储,我们可以求助于Python的内置函数id()。它用于返回对象的身份(identity)。其实,这里所谓的身份,就是该对象的内存地址。

a = 1
print(id(a))
print(hex(id(a)))
在我的计算机上,它们返回的是:
11246696
'0xab9c68'
分别为内存地址的十进制和十六进制表示。

在Python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。当我们创建多个等于1的引用时,实际上是让所有这些引用指向同一个对象。

# True
a = 1
b = 1
print(a is b)

# True
a = "good"
b = "good"
print(a is b)

# False
a = "very good morning"
b = "very good morning"
print(a is b)

# False
a = []
b = []
print(a is b)

2.2 引用机制

在Python中,每个对象都有存有指向该对象的引用总数,即引用计数(reference count)

我们可以使用sys包中的getrefcount(),来查看某个对象的引用计数。需要注意的是,当使用某个引用作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用。因此,getrefcount()所得到的结果,会比期望的多1。

from sys import getrefcount
a = [1, 2, 3]
print(getrefcount(a))
b = a
print(getrefcount(b))
由于上述原因,两个getrefcount将返回2和3,而不是期望的1和2。

Python的一个容器对象(container),比如表、词典等,可以包含多个对象。实际上,容器对象中包含的并不是元素对象本身,是指向各个元素对象的引用

2.3 垃圾回收

从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如某个新建对象,它被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收。比如下面的表:

a = [1, 2, 3]
del a

del a后,已经没有任何引用指向之前建立的[1, 2, 3]这个表。用户不可能通过任何方式接触或者动用这个对象。这个对象如果继续待在内存里,就成了不健康的脂肪。当垃圾回收启动时,Python扫描到这个引用计数为0的对象,就将它所占据的内存清空。

然而,减肥是个昂贵而费力的事情。垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收。所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。

我们可以通过gc模块的get_threshold()方法,查看该阈值:

import gc
print(gc.get_threshold())

返回(700, 10, 10),后面的两个10是与分代回收相关的阈值,后面可以看到。700即是垃圾回收启动的阈值。可以通过gc中的set_threshold()方法重新设置。

2.4 分代(generation)回收

Python同时采用了分代(generation)回收的策略。这一策略的基本假设是,存活时间越久的对象,越不可能在后面的程序中变成垃圾。我们的程序往往会产生大量的对象,许多对象很快产生和消失,但也有一些对象长期被使用。出于信任和效率,对于这样一些“长寿”对象,我们相信它们的用处,所以减少在垃圾回收中扫描它们的频率。

Python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象。如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定次数的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描。

这两个次数即上面get_threshold()返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收。

同样可以用set_threshold()来调整,比如对2代对象进行更频繁的扫描。

import gc
gc.set_threshold(700, 10, 5)

2.5 孤立的引用环

引用环的存在会给上面的垃圾回收机制带来很大的困难。这些引用环可能构成无法使用,但引用计数不为0的一些对象。

a = []
b = [a]
a.append(b)

del a
del b

上面我们先创建了两个表对象,并引用对方,构成一个引用环。删除了a,b引用之后,这两个对象不可能再从程序中调用,就没有什么用处了。但是由于引用环的存在,这两个对象的引用计数都没有降到0,不会被垃圾回收。

为了回收这样的引用环,Python复制每个对象的引用计数,可以记为gc_ref。假设,每个对象i,该计数为gc_ref_i。Python会遍历所有的对象i。对于每个对象i引用的对象j,将相应的gc_ref_j减1。

在结束遍历后,gc_ref不为0的对象,和这些对象引用的对象,以及继续更下游引用的对象,需要被保留。而其它的对象则被垃圾回收。

三、查看内存

3.1 资源(resource)

resource’ 模块用来查看项目当前得的固有的(Resident memory)内存消耗

Resident memory(固有内存)是项目实际使用的RAM

>>> import resource
>>> resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
4332

3.2 对象(objgraph)

objgraph’ 是一个实用模块,可以展示当前内存中存在的对象

来看看objgraph的简单用法:

import objgraph
import random
import inspect

class Foo(object):
   def __init__(self):
       self.val = None

   def __str__(self):
       return “foo – val: {0}”.format(self.val)

def f():
   l = []
   for i in range(3):
      foo = Foo()
      #print “id of foo: {0}”.format(id(foo))
      #print “foo is: {0}”.format(foo)
      l.append(foo)

   return l

def main():
   d = {}
   l = f()
   d[‘k’] = l
   print “list l has {0} objects of type Foo()”.format(len(l))

   objgraph.show_most_common_types()
   objgraph.show_backrefs(random.choice(objgraph.by_type(‘Foo’)),
filename=“foo_refs.png”)

   objgraph.show_refs(d, filename=‘sample-graph.png’)

if __name__ == “__main__”:
   main()
python test1.py

list l has 10000 objects of type Foo()
dict                       10423
Foo                        10000 ————> Guilty as charged!
tuple                      3349
wrapper_descriptor         945
function                   860
builtin_function_or_method 616
method_descriptor          338
weakref                    199
member_descriptor          161
getset_descriptor          107

注意,我们在内存中还持有10,423个‘dict’的实例对象。

可视化objgraph依赖项

Objgraph有个不错的功能,可以显示Foo()对象在内存中存在的因素,即,显示谁持有对它的引用 (在这个例子中是list ‘l’)。

在RedHat/Centos上, 你可以使用

sudo yum install yum install graphviz*  
安装graphviz

如需查看对象字典,d,请参考:

objgraph.show_refs(d, filename=’sample-graph.png’)

从内存使用角度来看,我们惊奇地发现——为什么对象没有释放?这是因为有人在持有对它的引用。

这个小片段展示了objgraph怎样提供相关信息:

objgraph.show_backrefs(random.choice(objgraph.by_type(‘Foo’)), filename=“foo_refs.png”)

在这一案例中, 我们查看了Foo类型的随机对象。我们知道该特定对象被保存在内存中,因其引用链接在指定范围内。

有时,以上技巧能帮助我们理解,为什么当我们不再使用某对象时,Python垃圾回收器没有将垃圾回收。

难处理的是,有时候我们会发现Foo()占用了很多内存的类。这时我们可以用heapy()来回答以上问题。

3.3 Heapy

heapy 是一个实用的,用于调试内存消耗/泄漏的工具。查看 http://guppy-pe.sourceforge.net/。通常,我将objgraph和heapy搭配使用:用 heapy 查看分配对象随时间增长的差异,heapy能够显示对象持有的最大内存等;用Objgraph找backref链(例如:前4节),尝试获取它们不能被释放的原因。

Heapy的典型用法是在不同地方的代码中调用一个函数,试图为内存使用量提供大量收集线索,找到可能会引发的问题

from guppy import hpy

def dump_heap(h, i):
   “””
   @param h: The heap (from hp = hpy(), h = hp.heap())
   @param i: Identifier str
   “””

   print “Dumping stats at: {0}”.format(i)
   print ‘Memory usage: {0} (MB)’.format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024)
   print “Most common types:”
   objgraph.show_most_common_types()

   print “heap is:”
   print “{0}”.format(h)

   by_refs = h.byrcs
   print “by references: {0}”.format(by_refs)

   print “More stats for top element..”
   print “By clodo (class or dict owner): {0}”.format(by_refs[0].byclodo)
   print “By size: {0}”.format(by_refs[0].bysize)
   print “By id: {0}”.format(by_refs[0].byid)

四 减少内存消耗小技巧

4.1 slots妙用

当你有许多对象时候可以使用Slots。Slotting传达给Python解释器:你的对象不需要动态的字典(从上面的例子3.2中,我们看到每个Foo()对象内部包含一个字典)

用slots定义你的对象,让python解释器知道你的类属性/成员是固定的.。这样可以有效地节约内存!

参考以下代码:

import resource
class Foo(object):
   #__slots__ = (‘val1’, ‘val2’, ‘val3’, ‘val4’, ‘val5’, ‘val6’)

   def __init__(self, val):
      self.val1 = val+1
      self.val2 = val+2
      self.val3 = val+3
      self.val4 = val+4
      self.val5 = val+5
      self.val6 = val+6

def f(count):
   l = []

   for i in range(count):
      foo = Foo(i)
      l.append(foo)

   return l

def main():
   count = 10000
   l = f(count)

   mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
   print “Memory usage is: {0} KB”.format(mem)
   print “Size per foo obj: {0} KB”.format(float(mem)/count)

if __name__ == “__main__”:
   main()


[vagrant@datosdev temp]$ python test2.py
Memory usage is: 16672 KB
Size per foo obj: 1.6672 KB

去掉这一行代码,然后运行 #__slots__ = (‘val1’, ‘val2’, ‘val3’, ‘val4’, ‘val5’, ‘val6’)

[vagrant@datosdev temp]$ python test2.py
Memory usage is: 6576 KB
Size per foo obj: 0.6576 KB

在这个例子中,减少了60%的内存消耗!

更多Slotting的信息,请点击链接: http://www.elfsternberg.com/2009/07/06/python-what-the-hell-is-a-slot/

4.2 驻留(Interning):谨防驻留字符串( interned strings)

Python会记录如字符串等不可改变的值(其每个值的大小依赖于实现方法),这称为驻留。

>>> t = “abcdefghijklmnopqrstuvwxyz”
>>> p = “abcdefghijklmnopqrstuvwxyz”
>>> id(t)
139863272322872

>>> id(p)
139863272322872

这是由python解析器完成的,这样做可以节省内存,并加快比较速度。例如,如果两个字符串拥有相同的ID或引用–他们就是全等的。

然而,如果你的程序创建了许多小的字符串,你的内存就会出现膨胀。

4.3 生成字符串时使用Format来代替“+”

接下来,在构造字符串时,使用Format来代替“+”构建字符串。

亦即,

st = “{0}_{1}_{2}_{3}”.format(a,b,c,d)   # 对内存更好,不创建临时变量st
st2 = a + ‘_’ + b + ‘_’ + c + ‘_’ + d # 在每个“+”时创建一个临时str,这些都是驻留在内存中的。

在我们的系统中,当我们将某些字符串构造从“+”变为使用format时,内存会明显被节省。

六、讨论

关于系统级别

上面我们讨论的技巧可以帮助你找出系统内存消耗的问题。但是,随着时间的推移,python进程产生的内存消耗会持续增加。这似乎与以下问题有关:

  • 为什么C中内存分配能够在Python内部起作用,这本质上是内存碎片导致的。因为,除非整个内存没有使用过,否则该分配过程不能调用‘free’方法。但需要注意的是,内存的使用不是根据你所创建和使用的对象来进行排列。
  • 内存增加也和上面讨论的“Interning” 有关。

以我的经验来看,减少python中内存消耗的比例是可行的。在Datos IO中,我曾经针对指定的内存消耗进程实现过一个工作模块。对于序列化的工作单元,我们运行了一个工作进程。当工作进程完成后, 它会被移除了——这是返回系统全部内存的唯一可以有效方法 :)。好的内存管理允许增加分配内存的大小,即允许工作进程长时间运行。

我归纳了一些减少python进程消耗内存的技巧,当我们在代码中寻找内存泄漏时,一种方法是通过使用Heapy找出哪些Obj占用了较多内存,然后通过使用Objgraph找出内存被释放的原因(除非你认为他们本应该被释放)。

总的来说,我觉得在python中寻找内存问题是一种修行。随着时间的积累,对于系统中的内存膨胀和泄漏问题,你能产生一种直觉判断,并能更快地解决它们。愿你在发现问题的过程中找到乐趣!

参考资料

个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn

Sam avatar
About Sam
专注生物信息 专注转化医学