【2.3.1】字符串编辑距离--Levenshtein距离(编辑距离)

在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”

一、概念

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

例如将kitten一字转成sitting:

sitten (k→s)
sittin (e→i)
sitting (→g)

  俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。因此也叫Levenshtein Distance。

例如

  • 如果str1=“ivan”,str2=“ivan”,那么经过计算后等于 0。没有经过转换。相似度=1-0/Math.Max(str1.length,str2.length)=1
  • 如果str1=“ivan1”,str2=“ivan2”,那么经过计算后等于1。str1的”1”转换”2”,转换了一个字符,所以距离是1,相似度=1-1/Math.Max(str1.length,str2.length)=0.8

二、应用

  1. DNA分析
  2. 拼字检查
  3. 语音辨识
  4. 抄袭侦测

三、原理

算法过程

  1. str1或str2的长度为0返回另一个字符串的长度。 if(str1.length==0) return str2.length; if(str2.length==0) return str1.length;
  2. 初始化(n+1)*(m+1)的矩阵d,并让第一行和列的值从0开始增长。
  3. 扫描两字符串(n*m级的),如果:str1 == str2[j],用temp记录它,为0。否则temp记为1。然后在矩阵d[i,j]赋于d[i-1,j]+1 、d[i,j-1]+1、d[i-1,j-1]+temp三者的最小值。
  4. 扫描完后,返回矩阵的最后一个值d[n][m]即是它们的距离。

计算相似度公式:1-它们的距离/两个字符串长度的最大值。

为了直观表现,我将两个字符串分别写到行和列中,实际计算中不需要。我们用字符串“ivan1”和“ivan2”举例来看看矩阵中值的状况:

1、第一行和第一列的值从0开始增长

i v a n 1
0 1 2 3 4 5
i 1
v 2
a 3
n 4
2 5

2、i列值的产生 Matrix[i - 1, j] + 1 ; Matrix[i, j - 1] + 1 ; Matrix[i - 1, j - 1] + t

i v a n 1
0+t=0 1+1=2 2 3 4 5
i 1+1=2 取三者最小值=0
v 2 依次类推:1
a 3 2
n 4 3
2 5 4

3、V列值的产生

i v a n 1
0 1 2 3 4 5
i 1 0 1
v 2 1 0
a 3 2 1
n 4 3 2
2 5 4 3

依次类推直到矩阵全部生成

i v a n 1
0 1 2 3 4 5
i 1 0 1 2 3 4
v 2 1 0 1 2 3
a 3 2 1 0 1 2
n 4 3 2 1 0 1
2 5 4 3 2 1 1

最后得到它们的距离=1 相似度:1-1/Math.Max(“ivan1”.length,“ivan2”.length) =0.8

参考资料

https://www.cnblogs.com/shihuajie/p/5772173.html

个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn

Sam avatar
About Sam
专注生物信息 专注转化医学