【7.2】线性代数--向量组的线性相关、秩(最大无关组)
初步认知秩
“秩”在数学上是有严格定义的。从数学上去掌握“秩”的数学解析意义应该说不难。简单来说,“秩”就是组成矩阵的各向量之间的最大线性无关数。例如,有一个有5个向量组成的方阵,如果这5个向量中最多有3个向量互不相关,就说这个矩阵的秩为3;如果这5个向量中最多有4个向量互不相关,就说这个矩阵的秩为4;如果这5个向量中5个向量都互不相关,就说这个矩阵满秩。满秩,就是组成矩阵的所有向量都线性无关。当然,这里略去了行秩和列秩的区别。
先说解决数学本身的一个实用问题。要解一个方阵 组成的线性代数方程,如果矩阵 满秩,方程才有唯一解。即:线性代数方程组有唯一解的条件是:矩阵满秩。否则,方程就无解。
再说现代控制理论中的一个实用问题。线性系统有一个矩阵,叫能控性矩阵。如果这个矩阵是满秩的,系统的状态就完全能控制;如果不满秩,系统的状态就不完全能控制。
一、向量组的线性相关性
定义1:
设向量组A: $ α_{1},α_{2},...α_{m} $
,及一组实数 $k_{1},k_{2},...k_{m} $
,表达式 $k_{1}α_{1} + k_{2}α_{2} + ... + k_{m}α_{m} $
称为向量组A的一个线性组合,$ k_{1},k_{2},...,k_{m} $
称为线性组合的系数。
定义2
设向量组A: $ α_{1},α_{2},...α_{m} $
和向量b,若存在一组实数 $ λ_{1},λ_{2},...λ_{m} $
,使得 $ $ b = λ_{1}α_{1} + λ_{2}α_{2} + ...+ λ_{m}α_{m} $
,则称向量b是向量组A的一个线性组合,或称向量b能由向量组A线性表示。
定义3
设向量组A: $ α_{1},α_{2},...α_{m} $
及B:$ β_{1},β_{2},...β_{m} $
,若B组中的每一个向量都能由向量组A线性表示,则称向量组B能由向量组A线性表示。
若向量组A与向量组B能互相线性表示,则称向量组A与向量组B等价,记为 (A) ~ (B)
定义4
向量组的等价具有性质:
- 反身性 (A) ~ (A)
- 对称性 若(A)~ (B) ,则 (B)~ (A)
- 传递性 若(A)~ (B) ,(B)~ (C),则 (A)~ (C)
特殊向量组合
例一
任意一个n维向量 α = $ α_{1},α_{2},...α_{n} $
都能由n维单位坐标向量组 $ ε_{1} = (1,0,..,0)$
,
$ ε_{2} = (0,1,..,0)$
,…,$ ε_{n} = (0,0,..,1)$
线性表示,即$ α = α_{1}ε_{1} + α_{2}ε_{2} + ... + α_{n}ε_{n} $
例二
零向量可由任何同维的向量组线性表出
$ 0 = 0α_{1}+ 0α_{2} + ...0α_{n} $
例三
向量组$ α_{1},α_{2},...α_{n} $
中任一向量都可由这个向量组线性表示
$ α_{i} = 0α_{1}+... + 0α_{i-1} +1α_{i}+ ...0α_{n} $
例四
将向量$ β = (1,0,-4)^{T}$
用向量组 $ α_{1} = (0,1,1)^{T}$
,$ α_{2} = (1,0,1)^{T}$
,$ α_{3} = (1,1,0)^{T}$
线性标出。
解: 设$ x_{1}α_{1} + x_{2}α_{2} + x_{3}α_{3} = β $
,即
$$ \begin{equation} f_X(x) = \left \{ \begin{array}{lr} 0x_{1} + 1x_{2} + 1x_{3} = 1 , \\ 1x_{1} + 0x_{2} + 1x_{3} = 0 , \\ 1x_{1} + 1x_{2} + 0x_{3} = -4 \end{array} \right. \end{equation} $$
解得 $ x_{1} = -\frac{5}{2} , x_{2} = -\frac{3}{2}, x_{3} = -\frac{5}{2} , $
所以 $ β = -\frac{5}{2}x_{1} -\frac{3}{2}x_{2} -\frac{5}{2}x_{3} $
例五
$ a_{1} = \begin{eqnarray} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \end{eqnarray} $
$ a_{2} = \begin{eqnarray} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \end{eqnarray}$
$ a_{3} = \begin{eqnarray} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \end{eqnarray}$
$ b = \begin{eqnarray} \begin{bmatrix} 0 \\ 3 \\ -3 \end{bmatrix} \end{eqnarray} $
则b能由 a1,a2,a3线性表示。
解方程组 x1a1 + x2a2 +x3a3 =b
解方程组
$$ \begin{equation} f_X(x) = \left \{ \begin{array}{lr} -2x_{1} + x_{2} + x_{3} = 0 , \\ x_{1} - 2x_{2} + x_{3} = 3 , \\ x_{1} + x_{2} - 2x_{3} = -3 \end{array} \right. \end{equation} $$
得
$ \begin{eqnarray} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = c\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix} \end{eqnarray} $
所以,b= -a1 - 2a2
线性相关性定理
定理1:
向量b可由向量组 $ α_{1},α_{2},...α_{m} $
线性表示
<=> Ax =b有解,其中A = $ α_{1},α_{2},...α_{m} $
<=> R(A) = R(A,b)
定理2
设向量组B:$ β_{1},β_{2},...β_{l} $
能由A: $ α_{1},α_{2},...α_{m} $
线性表示
<=> AX = B有解,其中 A= $ α_{1},α_{2},...α_{m} $
,B=$ β_{1},β_{2},...β_{l} $
<=> R(A) = R(A,B)
定理2‘
向量组$ β_{1},β_{2},...β_{l} $
能由向量组 $ α_{1},α_{2},...α_{m} $
线性表示的充要条件是 R( $ α_{1},α_{2},...α_{m} $
) = R( $ α_{1},α_{2},...α_{m} $
,$ β_{1},β_{2},...β_{l} $
)
偷个懒,接着直接阅读:
https://jingyan.baidu.com/article/d2b1d102c3538f5c7e37d40c.html
https://jingyan.baidu.com/article/ff42efa9caf7e9c19f220244.html
参考资料
个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn