【3】数据分析-1-数据的处理--numpy--3--sequeeze
#从数组的形状中删除单维条目,即把shape中为1的维度去掉
实例:
import numpy as np
x = np.array([[[0], [1], [2]]])
print '\nresult1:"'
print x.shape
xx =np.squeeze(x)
print '\nresult2:"'
print xx
print xx.shape
xxx = np.squeeze(x, axis=0)
print '\nresult3:"'
print xxx
print xxx.shape
xxxx = np.squeeze(x, axis=2)
print '\nresult4:"'
print xxxx
print xxxx.shape
y = np.array([[[0], [1], [2]],[[2], [3], [4]]])
yy =np.squeeze(y)
print '\nresult5:"'
print yy
print yy.shape
实例结果:
result1:"
(1L, 3L, 1L)
result2:"
[0 1 2]
(3L,)
result3:"
[[0]
[1]
[2]]
(3L, 1L)
result4:"
[[0 1 2]]
(1L, 3L)
result5:"
[[0 1 2]
[2 3 4]]
(2L, 3L)
参考资料
https://docs.scipy.org/doc/numpy/reference/generated/numpy.squeeze.html
这里是一个广告位,,感兴趣的都可以发邮件聊聊:tiehan@sina.cn
个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn
个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn