【2.6】直方图(Histograms)和频数多边形(frequency polygons)
通过将x轴划分成若干个单元并计算每个单元中的观察次数,可视化单个连续变量的分布。Histograms (geom_histogram) 通过每个条形(bar)来展示数目,frequency polygons (geom_freqpoly) 通过线条来展示数目。 Frequency 更适用于比较分布在一个分类变量的水平。
geom_freqpoly(mapping = NULL, data = NULL, stat = "bin",
position = "identity", ..., na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE)
geom_histogram(mapping = NULL, data = NULL, stat = "bin",
position = "stack", ..., binwidth = NULL, bins = NULL, na.rm = FALSE,
show.legend = NA, inherit.aes = TRUE)
stat_bin(mapping = NULL, data = NULL, geom = "bar", position = "stack",
..., binwidth = NULL, bins = NULL, center = NULL, boundary = NULL,
breaks = NULL, closed = c("right", "left"), pad = FALSE,
na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
一、变量含义
略
二、例子
ggplot(diamonds, aes(carat)) +
geom_histogram()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(diamonds, aes(carat)) +
geom_histogram(binwidth = 0.01)
ggplot(diamonds, aes(carat)) +
geom_histogram(bins = 200)
# Rather than stacking histograms, it's easier to compare frequency
# polygons
ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(binwidth = 500)
ggplot(diamonds, aes(price, colour = cut)) +
geom_freqpoly(binwidth = 500)
# To make it easier to compare distributions with very different counts,
# put density on the y axis instead of the default count
ggplot(diamonds, aes(price, stat(density), colour = cut)) +
geom_freqpoly(binwidth = 500)
if (require("ggplot2movies")) {
# Often we don't want the height of the bar to represent the
# count of observations, but the sum of some other variable.
# For example, the following plot shows the number of movies
# in each rating.
m <- ggplot(movies, aes(rating))
m + geom_histogram(binwidth = 0.1)
# If, however, we want to see the number of votes cast in each
# category, we need to weight by the votes variable
m + geom_histogram(aes(weight = votes), binwidth = 0.1) + ylab("votes")
# For transformed scales, binwidth applies to the transformed data.
# The bins have constant width on the transformed scale.
m + geom_histogram() + scale_x_log10()
m + geom_histogram(binwidth = 0.05) + scale_x_log10()
# For transformed coordinate systems, the binwidth applies to the
# raw data. The bins have constant width on the original scale.
# Using log scales does not work here, because the first
# bar is anchored at zero, and so when transformed becomes negative
# infinity. This is not a problem when transforming the scales, because
# no observations have 0 ratings.
m + geom_histogram(boundary = 0) + coord_trans(x = "log10")
# Use boundary = 0, to make sure we don't take sqrt of negative values
m + geom_histogram(boundary = 0) + coord_trans(x = "sqrt")
# You can also transform the y axis. Remember that the base of the bars
# has value 0, so log transformations are not appropriate
m <- ggplot(movies, aes(x = rating))
m + geom_histogram(binwidth = 0.5) + scale_y_sqrt()
}
# You can specify a function for calculating binwidth,
# particularly useful when faceting along variables with
# different ranges
mtlong <- reshape2::melt(mtcars)
#> No id variables; using all as measure variables
ggplot(mtlong, aes(value)) + facet_wrap(~variable, scales = 'free_x') +
geom_histogram(binwidth = function(x) 2 * IQR(x) / (length(x)^(1/3)))
参考资料
这里是一个广告位,,感兴趣的都可以发邮件聊聊:tiehan@sina.cn
个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn
个人公众号,比较懒,很少更新,可以在上面提问题,如果回复不及时,可发邮件给我: tiehan@sina.cn